China Good quality Customized High Quality Injection Molding Parts Small Plastic Gear for Toys gear box

Product Description

Customized High Quality injection molding parts Small Plastic Gear for Toys

 

Custom Molded Injection Plastic Parts
Material: ABS, PP, PS,PE, POM,PVC, PC, PA66, Nylon, Urethane, Santoprene, TPR, TPE ,PMMA etc
Color various per Pantone color.
Size customized, per your design 
Weight from 0.1grams to 12 000grams
Tolerance International Standard, or per your required. 
Tooling Material  ASSEB,H13,718H,S136H,NAK80,P20
Finish Smooth ,Matt, Chromate plating or any other finishes required 
Customized LOGO embossed or debossed logo on tooling or silk printing on part
Industries Appliance/ Automotive/ AgriculturalElectronics/ Industrial/ Marine Mining/ Hydraulics/ Valves Oil and Gas/ Electrical/ Construction
Drawing Format Pro-E(Igs, step, stp, etc), SolidWorks, AutoCAD
Mold cavity Single or multi-cavities
Lead time Tooling 25-35days depends on the structure of the drawing
 Samples: 1-2days after tooling
 Production:10days after the samples approved (also depends on order quantity )
Quality  ISO9001:2008 certificated factory
Reports  RoHS, FDA, UL, REACH , MDS, MSDS 
Packing  inner PP bag+carton box+ Pallet(if needed), or special packing
Shipping Way Express like DHL UPS FedEx TNT , or Air or Ocean 
   

About us

HangZhou CHINAMFG Rubber&Plastic Co. Ltd was founded in 1985, in HangZhou City, ZheJiang Province, China. Our main products are custom rubber and CHINAMFG which for varous industres CHINAMFG has 14sets vulcanizing machines, and 15set plastic injection machines from 50Tons to 1800tons. And 12 production lines for rubber and plastic extrusions. These support to provide the rubber plastic seals, o rings, rubber plastic covers, custom rubber CHINAMFG and rubber plastic extruded seals etc.

FAQ

Q1. How to buy your ideal products?
A. You can provide us with your drawings with specifications, we will produce as per your drawing. Or we can design as your requirements if you do not have a clear plan. 

Q2.Do you offer OEM/ODM servioe?
A.Yes, we have rich experience in offering OEM/ODM service.

Q3. What is your Packing/Package ?
A. Standard export packing or Customized packing as your request.

Q4.Which shipping method do you usually use?
A.The shipping methods are choosen by our customers,according to the price and shipping time.

Q5. What else can I do for you?
A. Our salesmen will reply your inquiry within 24 hours. We can give you any support on the technique & other aspects. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: ABS, PP, PS, PE, POM, PVC, PC, PA66, Pet
Color: Black, Red, Green, Yellow, Transparent
Size: Customized, Per Your Design
Weight: From 0.1grams to 12 000grams
Temperature: -40c-260c( or Per Your Required
Feature: UV, Oil, Heat Resistant;Abrasion, Aging Resistan
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

plastic gear

Can plastic gears withstand high torque and load conditions?

Plastic gears have certain limitations when it comes to withstanding high torque and load conditions. Here’s a detailed explanation of their capabilities:

Plastic gears can be designed and manufactured to handle a range of torque and load conditions, but their performance is generally inferior to that of metal gears in high-stress applications. The specific capabilities of plastic gears depend on various factors, including the chosen plastic material, gear design, tooth profile, and operating conditions.

While plastic gears may not be suitable for extremely high torque or heavy-load applications, they can still provide reliable performance in many moderate-load scenarios. Plastic gears are commonly used in applications with light to moderate loads, where their unique properties and advantages outweigh their limitations.

Some plastic materials, such as acetal (POM) and polyamide (nylon), offer good strength and wear resistance, allowing them to handle moderate torque and load conditions. These materials can be reinforced with additives or fillers to enhance their mechanical properties and increase their load-bearing capacity.

It’s important to note that when designing with plastic gears, engineers must carefully consider factors such as gear size, tooth geometry, material selection, and operating conditions. Reinforcement techniques, such as using metal inserts or reinforcing fibers, may be employed to improve the strength and load-bearing capabilities of plastic gears in certain applications.

In high torque or heavy-load applications, metal gears, particularly those made from steel or other high-strength alloys, are generally preferred due to their superior strength and durability. Metal gears offer higher load capacities, better resistance to deformation, and increased resistance to wear under extreme conditions.

Ultimately, the suitability of plastic gears for high torque and load conditions depends on the specific requirements of the application and the trade-off between the benefits of plastic gears, such as weight reduction and noise reduction, and the higher load-bearing capabilities of metal gears.

It’s recommended to consult with gear manufacturers or mechanical engineers to determine the most appropriate gear material and design for a particular application, especially when high torque and load conditions are expected.

plastic gear

What is the impact of temperature variations on plastic gears?

Temperature variations can have a significant impact on plastic gears. Here’s a detailed explanation of their effects:

1. Thermal Expansion: Plastic gears can experience thermal expansion or contraction with changes in temperature. Different types of plastics have varying coefficients of thermal expansion, meaning they expand or contract at different rates. This can result in dimensional changes, which may affect the gear’s meshing, clearance, and overall performance. It’s important to consider the thermal expansion characteristics of the specific plastic material used in the gear design.

2. Material Softening or Hardening: Plastic materials can exhibit changes in mechanical properties with temperature variations. In general, as temperature increases, plastic materials tend to soften and become more flexible, while at lower temperatures, they can become stiffer and more brittle. These changes can impact the gear’s load-bearing capacity, wear resistance, and overall durability. It’s crucial to select plastic materials that can maintain their mechanical integrity within the expected temperature range of the application.

3. Dimensional Stability: Plastic gears may experience dimensional changes or warping due to temperature fluctuations. Higher temperatures can cause plastic materials to deform, leading to misalignment, increased backlash, or reduced gear accuracy. Conversely, lower temperatures can cause contraction, resulting in tight clearances, increased friction, or gear binding. Proper design considerations, including material selection and gear geometry, can help mitigate the impact of temperature-induced dimensional changes.

4. Lubrication and Wear: Temperature variations can affect the lubrication properties of plastic gears. Higher temperatures can cause lubricants to degrade or become less effective, leading to increased friction, wear, and potential gear failure. Similarly, low temperatures can cause lubricants to thicken or solidify, hindering proper lubrication and increasing wear. Selecting lubricants suitable for the anticipated temperature range and periodic maintenance can help ensure proper lubrication and minimize wear on plastic gears.

5. Cold Flow and Creep: Some plastic materials, especially those with lower glass transition temperatures, may exhibit cold flow or creep at elevated temperatures. Cold flow refers to the gradual deformation or flow of plastic material under constant stress, while creep refers to the time-dependent deformation under a constant load. These phenomena can cause changes in gear geometry, tooth profile, or tooth engagement over time, potentially affecting gear performance and functionality. Understanding the material’s creep and cold flow characteristics is important when selecting plastic gears for applications exposed to temperature variations.

6. Impact on Lubricants and Seals: Temperature variations can also impact the performance of lubricants and seals used in gear systems. Extreme temperatures can cause lubricants to break down, lose viscosity, or leak from the gear assembly. Seals and gaskets may also be affected, leading to compromised gear housing integrity or increased friction. It’s crucial to consider temperature compatibility and select appropriate lubricants and seals that can withstand the anticipated temperature range.

In summary, temperature variations can significantly impact plastic gears by causing thermal expansion, material softening or hardening, dimensional changes, lubrication issues, cold flow or creep, and effects on lubricants and seals. Proper material selection, design considerations, and understanding the anticipated temperature range are essential to ensure the reliable and optimal performance of plastic gears in various applications.

plastic gear

Can plastic gears replace metal gears in certain applications?

Yes, plastic gears can replace metal gears in certain applications. Here’s a detailed explanation:

Plastic gears offer a range of advantages that make them suitable alternatives to metal gears in specific scenarios. Some of the factors that determine whether plastic gears can replace metal gears include the application requirements, operating conditions, load capacity, and desired performance characteristics.

Advantages of Plastic Gears:

  • Lightweight: Plastic gears are significantly lighter than metal gears, making them suitable for applications where weight reduction is important. This can lead to energy efficiency, reduced inertia, and lower wear on supporting components.
  • Low Noise and Vibration: Plastic gears have inherent damping properties that help reduce noise and vibration levels during operation. This makes them suitable for applications where noise reduction is desired, such as in consumer electronics or office equipment.
  • Corrosion Resistance: Certain plastic materials used in gear manufacturing exhibit excellent resistance to corrosion and chemicals. Plastic gears can be a suitable choice for applications in corrosive environments where metal gears may suffer from degradation.
  • Self-Lubrication: Some plastic materials used for gear manufacturing have self-lubricating properties. This reduces friction and wear between gear teeth, eliminating the need for external lubrication and simplifying maintenance requirements.
  • Cost-Effective: Plastic gears can be more cost-effective compared to metal gears, especially in large-scale production. Plastic materials are often less expensive than metals, and the manufacturing processes for plastic gears can be more efficient.
  • Design Flexibility: Plastic gears offer greater design flexibility compared to metal gears. They can be molded into complex shapes, allowing for custom gear profiles and tooth geometries, resulting in optimized performance and efficiency for specific applications.

Limitations of Plastic Gears:

  • High Torque and Load Capacity: Plastic gears may not have the same torque and load capacity as metal gears. In applications requiring high torque or heavy loads, metal gears may be more suitable due to their higher strength and durability.
  • High Temperatures: Plastic gears have temperature limitations depending on the chosen material. In applications with high operating temperatures, metal gears that can withstand the heat may be necessary.
  • Precision and Positioning: Plastic gears may not offer the same level of precision and positioning accuracy as metal gears. Applications that require tight tolerances and precise gear meshing may still require metal gears.

In summary, plastic gears can replace metal gears in certain applications where their advantages align with the specific requirements and operating conditions. It’s crucial to carefully evaluate the application needs, load capacity, temperature range, and other factors to determine if plastic gears are suitable replacements for metal gears.

China Good quality Customized High Quality Injection Molding Parts Small Plastic Gear for Toys gear boxChina Good quality Customized High Quality Injection Molding Parts Small Plastic Gear for Toys gear box
editor by CX 2024-04-04