China manufacturer China Supplier Alloy Steel Precision Double Gear Sprocket worm gear winch

Product Description

COMPANY INTRODUCTION

HangZhou Worth Engineering Technology Co., Ltd. founded in 2001 , Company is located in the Chinese ancient city — HangZhou. Our company has been engaged in producing custom made engineering accessories, OEM/ODM spare parts and industrial components for many years, including CHINAMFG parts and investment casting spare parts, forging parts, sheet metal stamping spare parts, machined parts and plastic parts, which are widely used in petrochemical, automobile, chemical, environmental protection , machinery, construction, agriculture, aerospace, marine hardware and other industries.
 

CNC TURNING/LATHE/FACING/GRINDING/DRILLING/FACING/MILLING/PUNCHING/MACHINING CENTER SPARE PARTS

 

Workshop equipment: CNC turning lathe, Grinding machine, Milling Machine, CNC machining center, Spark machine, cutting-off machine, card punch, EDM Machine, Wire-Cutting Machine, and some other normal processing machineries.
Post processing machine: Drill machine, multipoint drill machine, Dull polish machine, Polishing machine, Slinging machine, Cylinder processing machine, lapping machine, punching, and baking finish equipment.

Production range Including: auto&motocycle, mining machinery, building industry, electrical and electronic products, industrial machinery and equipment, transportation, and etc.

Authentication:We passed the ISO 9001-2015 International Quality System

Specifications:

1, Accuracy: according to the dimension tolerance of machining of customers’ requirement.
2, Surface roughness: Ra 0.8-3.2
3, Weight: ranging from 0.50g to 10,000kg
4, Surface finish: polishing, oiled(rust-prevented), zinc-plated, chrome-plated, hot-galvanized, sandblasting, painting, powder-coasting.

Inspection:
Inspection: in-house and third party
All the products are strictly inspected by operator and skilled QC with record put down.
Universal inspection tools: hardness tester, Height ruler, Depth ruler, Outside ruler, Venire Caliper,etc.

Material:

stainless steel:SS304,SS304L,SS316,SS316L,SS430,SS201……
aluminium:7075,6061,6063,5082,5051,2014…….
brass:H62,H58,H59……
steel:C20,C45,C60,C35……
steel alloy:25CrMo,42CrMo,25Cr,40Cr,Q345,11SMn30……
iron cast:QT600,QT250,HT450,HT150……
titanium alloy:GR2,GR5,GR7,GR9……
tungsten alloy:WuNiFe alloy,Carbide Wolfram……
the blanks:stamping parts,forging parts,die casting parts,profile,extrusion……
the plastic:PP,PE,POM,Acrylic,ABS,Delrin……
 

 

COMPANY EQUIPMENTS

THE PACKAGE AND SHIPMENT

CUSTOMERS

 

 

Application: Fastener, Auto and Motorcycle Accessory, Hardware Tool, Machinery Accessory
Standard: GB, EN, JIS Code, ASME
Surface Treatment: Powder Coated
Production Type: Mass Production
Machining Method: Broaching
Material: Nylon, Steel, Plastic, Brass, Alloy, Copper, Aluminum, Iron
Customization:
Available

|

Customized Request

plastic gear

What are the benefits of using plastic gears over traditional materials?

Using plastic gears instead of traditional materials offers several benefits. Here’s a detailed explanation of the advantages of using plastic gears:

  • Weight Reduction: Plastic gears are significantly lighter in weight compared to gears made from traditional materials such as metal. This lightweight characteristic is advantageous in applications where weight reduction is important, as it can contribute to energy efficiency, lower inertia, and reduced wear on supporting components.
  • Noise and Vibration Reduction: Plastic gears have inherent damping properties that help reduce noise and vibration levels during operation. This makes them suitable for applications where noise reduction is desired, such as in consumer electronics or office equipment. Metal gears, on the other hand, tend to generate more noise and vibration due to their higher stiffness.
  • Self-Lubrication: Certain plastic materials used in gears have inherent lubricating properties, allowing for self-lubrication between gear teeth. This reduces friction and wear, eliminating the need for external lubrication and simplifying maintenance requirements. Metal gears, on the other hand, typically require lubrication to reduce friction and wear.
  • Corrosion Resistance: Plastic gears can exhibit excellent resistance to corrosion and chemicals, depending on the chosen plastic material. This makes them suitable for applications in corrosive environments where metal gears may suffer from degradation or require additional protective measures.
  • Design Flexibility: Plastic gears offer greater design flexibility compared to metal gears. Plastic materials can be easily molded into complex shapes, allowing for the creation of custom gear profiles and tooth geometries. This design flexibility enables gear optimization for specific applications, improving performance, efficiency, and overall machinery design.
  • Cost-Effectiveness: Plastic gears are often more cost-effective compared to gears made from traditional materials. Plastic materials are generally less expensive than metals, and the manufacturing processes for plastic gears, such as injection molding, can be more efficient and economical for large-scale production.
  • Electrical Insulation: Plastic gears offer electrical insulation properties, which can be advantageous in applications where electrical isolation is required. Metal gears, on the other hand, can conduct electricity and may require additional insulation measures in certain situations.
  • Customization and Color Options: Plastic gears can be easily customized in terms of shape, size, color, and surface finish. This allows for branding, aesthetic preferences, or specific identification requirements in various applications. Metal gears, on the other hand, have more limited options for customization.

These benefits make plastic gears attractive alternatives to traditional materials in many applications. However, it’s important to consider the specific requirements and operating conditions of the application when selecting the appropriate gear material.

plastic gear

How do you prevent premature wear and degradation in plastic gears?

Preventing premature wear and degradation in plastic gears requires implementing various measures and considerations. Here’s a detailed explanation of how to achieve this:

1. Material Selection: Choose a plastic material with suitable properties for the specific application. Consider factors such as strength, stiffness, wear resistance, and compatibility with operating conditions. Opt for materials that have good resistance to wear, fatigue, and environmental factors to minimize premature degradation.

2. Gear Design: Pay attention to the design of the plastic gears to minimize wear and degradation. Optimize the tooth profile, gear geometry, and load distribution to reduce stress concentrations and ensure even load sharing among the teeth. Incorporate features such as fillets, reinforcements, and optimized tooth profiles to enhance the gear’s durability.

3. Lubrication: Proper lubrication is essential to reduce friction, minimize wear, and prevent premature degradation. Choose lubricants that are compatible with the plastic material and the operating conditions. Ensure adequate lubrication by following manufacturer recommendations and implementing proper lubrication techniques such as oil bath, grease, or dry lubrication.

4. Operating Conditions: Consider the operating conditions and make adjustments to prevent premature wear and degradation. Control operating temperatures within the recommended range for the plastic material to avoid thermal degradation. Avoid excessive speeds or loads that can lead to increased friction and wear. Minimize exposure to harsh chemicals, UV radiation, or abrasive particles that can degrade the plastic material.

5. Maintenance: Implement regular maintenance practices to prevent premature wear and degradation. Conduct periodic inspections to identify signs of wear or damage. Replace worn or damaged gears promptly to prevent further degradation. Follow recommended maintenance schedules for lubrication, cleaning, and any other specific requirements for the plastic gears.

6. Proper Installation: Ensure that plastic gears are installed correctly to minimize wear and degradation. Follow manufacturer guidelines and recommendations for installation procedures, such as proper alignment, torque values, and fastening techniques. Improper installation can lead to misalignment, increased stress concentrations, and accelerated wear.

7. Optimized Load Distribution: Design the gear system to ensure even load distribution across the gear teeth. Consider factors such as tooth profile, tooth width, and the number of teeth to optimize load sharing. Uneven load distribution can lead to localized wear and premature degradation of specific gear teeth.

8. Environmental Protection: Protect plastic gears from harsh environmental conditions that can accelerate wear and degradation. Implement measures such as sealing mechanisms, coatings, or encapsulation to shield the gears from exposure to chemicals, moisture, UV radiation, or abrasive particles.

9. Quality Manufacturing: Ensure high-quality manufacturing processes to minimize defects and inconsistencies that can compromise the durability of plastic gears. Use reputable suppliers and manufacturers that adhere to strict quality control measures. Conduct thorough inspections and testing to verify the quality of the gears before installation.

By considering these preventive measures, such as material selection, gear design, lubrication, operating conditions, maintenance, proper installation, load distribution optimization, environmental protection, and quality manufacturing, it’s possible to minimize premature wear and degradation in plastic gears, ensuring their longevity and performance.

plastic gear

Are there different types of plastic materials used for making gears?

Yes, there are different types of plastic materials used for making gears. Here’s a detailed explanation of some commonly used plastic materials in gear manufacturing:

  • Acetal (Polyoxymethylene – POM): Acetal is a popular choice for gear applications due to its excellent strength, dimensional stability, low friction, and wear resistance. It has good machinability and can be easily molded into gears with precise tooth profiles. Acetal gears offer low noise operation and have good resistance to moisture and chemicals. They are commonly used in automotive, consumer electronics, and industrial applications.
  • Polyamide (Nylon): Polyamide or nylon is another widely used plastic material for gears. It offers good mechanical properties, including high strength, toughness, and impact resistance. Nylon gears have low friction characteristics, good wear resistance, and self-lubricating properties. They are commonly used in applications such as automotive components, power tools, and industrial machinery.
  • Polyethylene (PE): Polyethylene is a versatile plastic material that can be used for gear applications. It offers good chemical resistance, low friction, and excellent electrical insulation properties. While polyethylene gears may have lower strength compared to other plastic materials, they are suitable for low-load and low-speed applications, such as in light-duty machinery, toys, and household appliances.
  • Polypropylene (PP): Polypropylene is a lightweight and cost-effective plastic material that finds applications in gear manufacturing. It offers good chemical resistance, low friction, and low moisture absorption. Polypropylene gears are commonly used in various industries, including automotive, consumer electronics, and household appliances.
  • Polycarbonate (PC): Polycarbonate is a durable and impact-resistant plastic material used for gears that require high strength and toughness. It offers excellent dimensional stability, transparency, and good resistance to heat and chemicals. Polycarbonate gears are commonly used in applications such as automotive components, electrical equipment, and machinery.
  • Polyphenylene Sulfide (PPS): Polyphenylene sulfide is a high-performance plastic material known for its excellent mechanical properties, including high strength, stiffness, and heat resistance. PPS gears offer low friction, good wear resistance, and dimensional stability. They are commonly used in demanding applications such as automotive transmissions, industrial machinery, and aerospace equipment.

These are just a few examples of the plastic materials used for making gears. The choice of plastic material depends on the specific requirements of the gear application, including load capacity, operating conditions, temperature range, chemical exposure, and cost considerations. It’s important to select a plastic material that offers the necessary combination of mechanical properties and performance characteristics for optimal gear performance.

China manufacturer China Supplier Alloy Steel Precision Double Gear Sprocket worm gear winchChina manufacturer China Supplier Alloy Steel Precision Double Gear Sprocket worm gear winch
editor by CX 2023-11-08